Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Chinese Journal of Biotechnology ; (12): 912-929, 2023.
Article in Chinese | WPRIM | ID: wpr-970413

ABSTRACT

Chitosanases represent a class of glycoside hydrolases with high catalytic activity on chitosan but nearly no activity on chitin. Chitosanases can convert high molecular weight chitosan into functional chitooligosaccharides with low molecular weight. In recent years, remarkable progress has been made in the research on chitosanases. This review summarizes and discusses its biochemical properties, crystal structures, catalytic mechanisms, and protein engineering, highlighting the preparation of pure chitooligosaccharides by enzymatic hydrolysis. This review may advance the understandings on the mechanism of chitosanases and promote its industrial applications.


Subject(s)
Chitosan/chemistry , Chitin , Glycoside Hydrolases/genetics , Protein Engineering , Oligosaccharides/chemistry , Hydrolysis
2.
Chinese Journal of Biotechnology ; (12): 4432-4448, 2022.
Article in Chinese | WPRIM | ID: wpr-970325

ABSTRACT

Starch is composed of glucose units linked by α-1, 4-glucoside bond and α-1, 6-glucoside bond. It is the main component of foods and the primary raw material for starch processing industry. Pullulanase can effectively hydrolyze the α-1, 6-glucoside bond in starch molecules. Combined with other starch processing enzymes, it can effectively improve the starch utilization rate. Therefore, it has been widely used in the starch processing industry. This paper summarized the screening of pullulanase-producing strain and its encoding genes. In addition, the effects of expression elements and fermentation conditions on the production of pullulanase were summarized. Moreover, the progress in crystal structure elucidation and molecular modification of pullulanase was discussed. Lastly, future perspectives on pullulanase research were proposed.


Subject(s)
Glycoside Hydrolases/genetics , Starch/metabolism
3.
Chinese Journal of Biotechnology ; (12): 4169-4186, 2021.
Article in Chinese | WPRIM | ID: wpr-921497

ABSTRACT

Glycoside compounds are widely used in medicine, food, surfactant, and cosmetics. The glycosidase-catalyzed synthesis of glycoside can be operated at mild reaction conditions with low material cost. The glycosidase-catalyzed processes include reverse hydrolysis and transglycosylation, appropriately reducing the water activity in both processes may effectively improve the catalytic efficiency of glucosidase. However, glucosidase is prone to be deactivated at low water activity. Thus, glucosidase was immobilized to maintain its activity in the low water activity environment, and even in neat organic solvent system. This article summarizes the advances in glycosidase immobilization in the past 30 years, including single or comprehensive immobilization techniques, and immobilization techniques combined with genetic engineering, with the aim to provide a reference for the synthesis of glycosides using immobilized glycosidases.


Subject(s)
Catalysis , Enzymes, Immobilized , Glycoside Hydrolases/genetics , Glycosides/biosynthesis , Hydrolysis
4.
Chinese Journal of Biotechnology ; (12): 1919-1930, 2021.
Article in Chinese | WPRIM | ID: wpr-887772

ABSTRACT

Glycosidases are widely used in food and pharmaceutical industries due to its ability to hydrolyze the glycosidic bonds of various sugar-containing compounds including glycosides, oligosaccharides and polysaccharides to generate derivatives with important physiological and pharmacological activity. While glycosidases often need to be used under high temperature to improve reaction efficiency and reduce contamination, most glycosidases are mesophilic enzymes with low activity under industrial production conditions. It is therefore critical to improve the thermo-stability of glycosidases. This review summarizes the recent advances achieved in engineering the thermo-stability of glycosidases using strategies such as directed evolution, rational design and semi-rational design. We also compared the pros and cons of various techniques and discussed the future prospects in this area.


Subject(s)
Glycoside Hydrolases/genetics , Oligosaccharides , Polysaccharides , Protein Engineering
5.
Braz. j. microbiol ; 48(4): 612-614, Oct.-Dec. 2017. tab
Article in English | LILACS | ID: biblio-889174

ABSTRACT

ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial , Glycoside Hydrolases/genetics , Soil Microbiology , Streptomyces/enzymology , Streptomyces/isolation & purification , Bacterial Proteins/metabolism , Base Composition , Brazil , Glycoside Hydrolases/metabolism , Multigene Family , Phylogeny , Streptomyces/classification , Streptomyces/genetics
6.
Electron. j. biotechnol ; 29: 63-67, sept. 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-1017249

ABSTRACT

Background: Pullulanase production in both wild-type strains and recombinantly engineered strains remains low. The Shine-Dalgarno (SD) sequence and stem-loop structure in the 5' or 3' untranslated region (UTR) are well-known determinants of mRNA stability. This study investigated the effect of mRNA stability on pullulanase heterologous expression. Results: We constructed four DNA fragments, pulA, SD-pulA, pulA-3t, and SD-pulA-3t, which were cloned into the expression vector pHT43 to generate four pullulanase expression plasmids. The DNA fragment pulA was the coding sequence (CDS) of pulA in Klebsiella variicola Z-13. SD-pulA was constructed by the addition of the 5' SD sequence at the 5' UTR of pulA. pulA-3t was constructed by the addition of a 3' stem-loop structure at the 3' UTR of pulA. SD-pulA-3t was constructed by the addition of the 5' SD sequence at the 5' UTR and a 3' stem-loop structure at the 3' UTR of pulA. The four vectors were transformed into Escherichia coli BL21(DE3). The pulA mRNA transcription of the transformant harboring pHT43-SD-pulA-3t was 338.6%, 34.9%, and 79.9% higher than that of the other three transformants, whereas the fermentation enzyme activities in culture broth and intracellularly were 107.0 and 584.1 times, 1.2 and 2.0 times, and 62.0 and 531.5 times the amount of the other three transformants (pulA, SD-pulA, and pulA-3 t), respectively. Conclusion: The addition of the 5' SD sequence at the 5' UTR and a 3' stem-loop structure at the 3' UTR of the pulA gene is an effective approach to increase pulA gene expression and fermentation enzyme activity.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/genetics , Glycoside Hydrolases/metabolism , Transformation, Genetic , Gene Expression , Reverse Transcriptase Polymerase Chain Reaction , RNA Stability , Fermentation , Genetic Vectors , Glycoside Hydrolases/genetics
7.
Braz. j. microbiol ; 48(3): 427-441, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889130

ABSTRACT

Abstract The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30 °C, 6% (v/v), inoculum size and 150 rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.


Subject(s)
Aspergillus niger/metabolism , beta-Fructofuranosidase/biosynthesis , Glycoside Hydrolases/biosynthesis , Industrial Microbiology/methods , Aspergillus niger/enzymology , Aspergillus niger/genetics , Aspergillus niger/growth & development , beta-Fructofuranosidase/genetics , Bioreactors/microbiology , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Glycoside Hydrolases/genetics , Temperature
9.
Braz. j. microbiol ; 44(3): 969-976, July-Sept. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-699828

ABSTRACT

The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.


Subject(s)
Bacteria/enzymology , Geologic Sediments/microbiology , Glycoside Hydrolases/metabolism , Wetlands , Brazil , Bacteria/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Glycoside Hydrolases/genetics , Molecular Sequence Data , Phylogeny , /genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism
10.
P. R. health sci. j ; 18(4): 363-7, dez. 1999. ilus, tab, graf
Article in English | LILACS | ID: lil-260829

ABSTRACT

This brief report describes the isolation and initial characterization of revertants to the most severe temperature sensitive folding mutant known. The revertants or suppressors may describe amino acid interactions that occur during the folding of the P22 tailspike polypeptide chain. Results indicate that several different types of suppressors may have been obtained.


Subject(s)
/genetics , Genes, Suppressor/genetics , Glycoside Hydrolases/genetics , Mutation , Protein Folding , Viral Tail Proteins/genetics
11.
Arch. biol. med. exp ; 23(2): 165-72, oct. 1990. tab
Article in Spanish | LILACS | ID: lil-96788

ABSTRACT

The invertase wild type gene of N. crassa was cloned into the YRp7 yeast vector. This recombinant plasmid was selected by functional complementation of an invertaseless mutant strain of S. cerevisiae. The isolated recombinant plasmid (named pNC2) carries a 7.6 Kb BamHI DNA fragment from N. crassa. The cloned DNA hydbridized with the N. crassa genomic DNA and transformed an invertase mutant of N. crassa Inv- to Inv+. Transformation of N. crassa Inv- to Inv+ seems to take at least two different integration events. One of them involves an integration closely linked to inv locus, and the other one apparently involves as integration of cloned DNA at a genomic site different that the inv locus


Subject(s)
Cloning, Molecular/methods , Genes, Fungal , Glycoside Hydrolases/genetics , Neurospora crassa/enzymology , DNA, Fungal/genetics , Neurospora crassa/genetics , Plasmids , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL